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Abstract

Enhanced re¯ection of fast electrons from a crystal
surface and a decrease in the depth of penetration of the
primary beam occurs when diffraction conditions are
such as to set up a wave travelling just beneath the
crystal surface. This is the surface resonance condition
for re¯ection high-energy electron diffraction
(RHEED). Quantitative prediction of these effects can
be achieved by assuming that only the primary and two
diffracted beams are signi®cant. Expressions for the
coef®cient of re¯ection and the depth of penetration in
terms of a few Fourier coef®cients of an effective
potential are derived. These coef®cients depend sensi-
tively on incident-beam direction and are signi®cantly
different from the values for the bulk crystal. In
particular, the mean potential experienced by the
electrons in the resonance state is increased. It can be
estimated using Bethe's perturbation approach. Predic-
tions of the position, height and width of the peak in
re¯ectivity resulting from resonance scattering from the
(111) surface of platinum are in reasonable agreement
with the values obtained from many-beam computa-
tions. The three-beam approach gives insight into
resonance scattering using the standard formalism of
diffraction theory.

1. Introduction

Accurate analysis of electron diffraction patterns
requires that the interaction between many diffracted
beams be considered. Under some conditions, however,
it is possible to assume that only the primary beam and
two diffracted beams are signi®cant. For instance,
Moodie (1979) and Moodie et al. (1996) have shown that
the three-beam approximation can be used to determine
structure factors from transmission diffraction patterns.
In re¯ection high-energy electron diffraction (RHEED),
as shall be shown, a three-beam analysis can be applied
to the phenomenon of surface resonance scattering.
When the conditions for resonance scattering are set up,
one observes an increase in the intensity of the specu-
larly re¯ected beam along with a decrease in penetration
of the fast electrons into the bulk of the crystal. A

wave®eld travelling parallel to the crystal surface is set
up.

When diffraction from a surface occurs, one does not
observe the diffracted beams that exist within the crystal
directly, unlike the situation of diffraction associated
with transmission through a thin foil. In the kinema-
tic approximation to diffraction, the amplitudes of
diffracted beams are given by the convolution of the
Fourier components of the crystal potential with the
shape function of the crystal (e.g. Cowley, 1995). The
shape function of a semi-in®nite crystal that is used in
re¯ection experiments depends only on the coordinate
perpendicular to the crystal surface and varies relatively
slowly with distance in reciprocal space. The diffraction
pattern resulting from re¯ection can thus be considered
as being the intersection of the Ewald sphere with
reciprocal-lattice rods which are perpendicular to the
surface. The rods represent the scattering power as a
function of angle of scattering for a system which is
periodic in two dimensions. This scattering power can be
described in terms of the Fourier components of the
potential. If there is no surface reconstruction, the only
potential components are those associated with reci-
procal-lattice points lying along a line perpendicular to
the surface.

The `three-beam' analysis presented here involves
two rods, labelled (0, 0) and (0, G). The (0, 0) rod has a
scattering power described by a Fourier series with two
terms [from the reciprocal-lattice points (0, 0, 0) and
(0, 0, ÿM0g)] and the (0, G) rod has a scattering power
described by a Fourier series with a single term related
to the (0, G, ÿMgg) reciprocal-lattice point. These three
components of the scattering power lead to a diffracted
wave with three Fourier components. These are the
three beams that exist within the crystal. Fig. 1 shows
two rows of reciprocal-lattice points and indicates three
points that are close to the intersection of the Ewald
sphere with the plane in reciprocal space containing
these lattice points. Peng & Cowley (1987) provide a
detailed description of the use of the Ewald construction
in RHEED.

As for the case of transmission diffraction, it is
possible to include, to some degree of approximation,
through the use of perturbation theory as ®rst set out by
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Bethe (e.g. Cowley, 1995), the effects of the Fourier
components of the potential which have not been
included in the three-beam approximation. Bethe's
approach leads to an effective potential which depends
on the direction of the incident beam.

In this paper, approximate expressions are obtained
for the re¯ectivity and for the depth of penetration of
the primary beam as functions of the angle of incidence
of the beam and the Fourier components of the poten-
tial. These expressions are applied to resonance scat-
tering from the (111) surface of platinum and the results
are compared with those obtained by Dudarev &
Whelan (1994a,b, 1995) through many-beam computa-
tions.

Dudarev & Whelan (1994a,b, 1995) have also estab-
lished relatively simple expressions for the re¯ectivity
and penetration depth. The relationship between the
two methods is discussed and it is shown that they are of
similar accuracy, as judged by comparison with the
many-beam results.

The paper is set out as follows. In x2, the equations for
the three-beam approximation are given. Their solution
requires determination of the eigenvalues and eigen-
vectors of a 6 � 6 matrix. Through the use of Hill's
determinant (Lamla, 1938; Moon, 1972), it is shown in
Appendix A that the eigenvalues can be expressed as
power series in the Fourier components of the potential.
The ®rst few terms of these series are determined
by using a computer algebra package, Mathematica
(Wolfram, 1991). The inverse of the imaginary part of
one of these eigenvalues is directly proportional to the
depth of penetration of the primary beam. Expressions
for the eigenvectors (Bloch waves) associated with
these eigenvalues are given. The re¯ection coef®cient is
then obtained by relating the wave®eld inside the
crystal to that outside.

In x3, the effective potentials which result from
including the effects of other Fourier components on the
amplitudes of the three beams are discussed. The
analysis differs somewhat from that of the transmission
case in that the eigenvalues are required to determine
the correction terms for the original potential.

After the expressions for the depth of penetration and
the re¯ection coef®cient in terms of three components
of an effective potential have been determined, in x4
they are applied to the surface resonance scattering of
100 keV electrons by the (111) surface of platinum, and
curves showing how these two quantities vary with the
azimuthal angle are compared with those obtained by
Dudarev & Whelan (1994a,b).

2. Expressions for the re¯ection coef®cient and
penetration depth

Expressing the potential as a Fourier series with
components Vg labelled by reciprocal-lattice vectors g
results in Schroedinger's equation being transformed
into an in®nite set of equations for the Fourier compo-
nents Cg(k) of the wave function (Hirsch et al., 1977).
The countably in®nite set of solutions that arise are
labelled by k.

��2 � U0 ÿ �k� g�2�Cg�k� �
P
h 6�g

UgÿhCh�k� � 0; �1�

where � is the modulus of the wavevector of the incident
plane wave and

�2 � 2mE=h- 2�1� eE=2m0c2� �2�
and

Ug � 2meVg=h- 2: �3�
Let K2 � �2 � U0 with K � v � 0n and where n is a
unit vector normal to the surface and pointing towards
the crystal. Instead of labelling solutions by k we use 
de®ned by

k� g � K� n� g: �4�
Then the scattering equations can be written as

f� � K � n� g � n�2 ÿ �K2 ÿ �K� g�2t �gCg�k�
ÿP

h 6�g

UgÿhCh�k� � 0; �5�

where (K� g�t is the tangential component of the
vector.

Assume there are two rods which account for the
scattering. Label these as (0, 0) and (0, G). The beams
which contribute to the scattering can be labelled as
(0, 0, mg) and (0, G, mg) where m is any integer.

Coordinates (x, y, z) are used, with z normal to the
surface and x along the zone axis. Then �z depends on
the tilt angle and �y depends on the azimuthal and tilt
angles of the incident beam. It is convenient to de®ne

Fig. 1. The Ewald construction for analysing resonance scattering. The
intersection of the Ewald sphere with a plane in reciprocal space
and two rows of reciprocal-lattice points in that plane are shown.
Three points closest to the sphere are shown as ®lled circles. These
correspond to the beams used in the three-beam analysis.
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x � � � K � n�=g �6�

c2
0 � K2

z=g2 �7�
and

c2
G � �K2 ÿ �K� g�2t �=g2

� ��2
z � U0 ÿ 2KyGÿG2�=g2 �8�

so that (5) becomes

��x�m�2 ÿ c2
G0 �C�0;G0;mg��k� ÿ

P
h 6�g

�Ugÿh=g2�Ch�k� � 0

�9�
with G0 � 0 or G.

Resonance scattering corresponds to the situation
in which the wave®eld has signi®cant components
(0, 0, mg) and (0, G, ng) for some values of m and n. The
conditions for resonance to occur can be expressed in
terms of c0 and cG, as shown below. Bragg conditions
correspond to c0 being an integer.

The eigenvalues of the above system can be deter-
mined by the special methods developed by Hill, which
leads to the eigenvalues being expressed in terms of the
roots of a biquadratic equation (Lamla, 1938; Moon,
1972). Two independent sets of eigenvalues are
obtained. Each set consists of complex conjugate pairs
which differ from each other by an integer. When
resonance is established, the re¯ection coef®cient equals
1 if the Fourier coef®cients of the potential are real, and
the two sets of eigenvalues are generated from numbers
which have equal non-zero imaginary parts and real
parts of opposite sign.

In the following it is assumed that the only signi®cant
components of the crystal potential are (0, 0, 0),
(0, 0, �2g) and (0, �G, �g). Equation (31) of Appendix
A shows that equal imaginary parts occur when
�y2

0 ÿ y2
G�2� 8A0y0y2

G � 8AGyGy2
0 < 0. This inequality

can be satis®ed if c0 ' 1ÿ cG when y0 ' ÿyG and
A0 ' AG. Peng (1994) has discussed the conditions for
resonance in terms of the eigenvalues of the scattering
matrix. He concludes that the two eigenvalues are equal
and therefore there is a singularity in the re¯ection
coef®cient. In the present work, the eigenvalues are
closely related and there is no anomaly in the re¯ection
coef®cient.

Now consider the orientation of the crystal at which
c0 ' 1. This is the situation considered by Dudarev &
Whelan (1994a,b, 1995, 1997); the results developed
here will be used in x4. In this orientation,
y0 ' ��c0 ÿ 1� and yG ' �cG. To lowest order in the
potential coef®cient U0Gg and assuming U002g � U0Gg,

2A0y0y2
G � 2AGyGy2

0

� ÿ�4�U0Gg=g2�2�1ÿ c2
G=4��1ÿ c0�: �10�

When c0 � cG ' 1, it is found from (31) that the
eigenvalues are approximately

f�c0 ÿ 1�2 � i�U0Gg=g2���1ÿ c2
G=4��1ÿ c0��1=2g1=2: �11�

The depth of penetration of the electron wave into the
crystal is proportional to the inverse of the imaginary
part of the eigenvalues.

If absorption is signi®cant, the condition c0 � cG � 1
cannot be satis®ed exactly and it becomes possible to
use the ®rst two terms in the binomial expansion for the
square root in (31). One of the roots of (31) is
approximately y2

G and the other root is approximately
y2

0 � 4A0y0y2
G � 4AGyGy2

0 and very much less than 1.
Further use of the binomial expansion leads to the
following expressions for the eigenvalues:

x�1� � cG �12�

x�2� � �c0 ÿ 1� ÿ �U0Gg=g2�2
� �1ÿ c2

G=4��c0 ÿ 1�=��c0 ÿ 1�2 ÿ c2
G�: �13�

The (0, G, ÿg) component of the wave®eld associated
with the set x�1� is the largest near resonance. The other
components are given by

C
�1�
�002�g�=C

�1�
�0G�g� �

U2
0Gg=�U0Ggg2� � x�1�2 ÿ c2

G

U002g=g2 � �x�1� ÿ 1�2 ÿ c2
0

� U002g

U0Gg

� �
�14�

C
�1�
�000�=C

�1�
�0G�g� �

U2
0Gg=�U0Ggg2� � x�1�2 ÿ c2

G

U002g=g2 � �x�1� � 1�2 ÿ c2
0

� U002g

U0Gg

� �
: �15�

The wave®eld associated with x�2� has components given
by

C
�2�
�002�g�=C

�2�
�000� �

U002g=g2 � �x�2� � 1�2 ÿ c2
0

U002g=g2 � �x�2� ÿ 1�2 ÿ c2
0

�16�

C
�2�
�0G�g�=C

�2�
�000� �

U002g=g2 � �x�2� � 1�2 ÿ c2
0

U2
0Gg=�U0Ggg2� � x�1�2 ÿ c2

G

� U0Gg

U002g

� �
: �17�

The amplitude of the specularly re¯ected wave can be
found by matching the solution within the crystal to
solutions corresponding to plane waves travelling away
from the surface. The re¯ection coef®cient is given by
solving a set of four simultaneous equations for the two
components of the re¯ected wave and the amplitudes of
the two Bloch waves within the crystal. Away from a
resonance, to a good approximation, only the wave
corresponding to eigenvalue x�2� is signi®cant for calcu-
lating the coef®cient of specular re¯ection. Then the
re¯ection coef®cient is given by
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Rpot � �a�2� ÿ b�2��=�a�2� � b�2��; �18�
where

a�2� � 1� C
�2�
�002�g�=C

�2�
�000� �19�

and

b�2� � �1ÿ x�2� ÿ �1� x�2��C�2��002�g�=C
�2�
�000��g=�z: �20�

Note that Rpot depends on the azimuthal angle since the
eigenvalue x�2� depends on the parameter cG. Rpot has a
maximum near the angle for resonance scattering, but
near a resonance, an additional term becomes impor-
tant. To a good approximation, the total re¯ection
coef®cient is

R � Rpot �
�b�1� ÿ a�1���1ÿ x�2�g=�z�
�a�2� � b�2���1ÿ x�1�g=�G�

C
�2�
�0G�g�=C

�2�
�000�; �21�

where

a�1� � �C�1��000� � C
�1�
�002�g��=C

�1�
�00G�g� �22�

and

b�1� � �x�1� ÿ 1�g
�z

C
�1�
�000� �

�x�1� � 1�g
�z

C
�1�
�002�g�

� ��
C
�1�
�00G�g�

�23�
and

�2
G � �2

z ÿ 2�yGÿG2: �24�

3. Estimation of many-beam effects by perturbation
theory

In order to allow for the effects of the Fourier coef®-
cients of the potential which have not been explicitly
considered in the three-beam approximation, we may
employ perturbation theory in the way ®rst used by
Bethe (e.g. Cowley, 1995). An iterative process can be
used to calculate the components Ch�k� which have not
been explicitly included from the three components that
have. Label the three largest components as (0, 0, 0),
(0, 0, ÿM0g) and (0, G, ÿMGg), where M0 and MG are
integers corresponding to the reciprocal-lattice points
closest to the Ewald sphere (Fig. 1). The ®rst iteration
results in the estimates for the amplitudes of the other
components, labelled (0, G0, mg),

C�0;G0;mg��k� �
P

h

�3��Ugÿh=g2�Ch�k�=��x�m�2 ÿ c2
G0 �;
�25�

where the summation is over the three signi®cant
components. The most signi®cant additional compo-
nents are those which correspond to reciprocal-lattice
points close to the Ewald sphere, i.e. the
[0;G;ÿ�MG � 1�g], [0;G;ÿ�MG ÿ 1�g] and �0; 0;�g�
components. Note that unlike the situation when

transmission through a thin foil occurs and the eigen-
values are small enough to be insigni®cant, in the case of
re¯ection an estimate of the eigenvalues x must be
made. The estimate can be made using equations (12)
and (13) with the potential coef®cients for the bulk. The
additional components calculated by (25) are then
included in the summation in the scattering equations
(9) and result in a set of equations of the same form as
the original set but with modi®ed potential coef®cients
�U�g; h�. Solution of these three-beam equations
provides an improved estimate of the amplitudes of the
three most important components of the wave®eld.
Close to the resonance condition, the most signi®cant
differences between the modi®ed and original potential
coef®cients are for �U��0;G;ÿMGg�, �0;G;ÿMGg��,
�U��0;G;ÿMGg�, �0;ÿM0g;ÿMGg�� and �U��0; 0; 0�,
�0;G;ÿMGg��.

The modi®ed potential coef®cients lead to the modi-
®ed parameter �cG given by

�c2
G � f�2

z � �U��0;G;ÿMGg�; �0;G;ÿMGg��
ÿ 2KyGÿG2g=g2: �26�

4. Application of the theory

An example analysed in some detail by Dudarev &
Whelan (1994a,b) and by Derlet & Smith (1997) is
addressed here. These authors considered the resonance
scattering produced when 100 keV electrons are inci-
dent on a (111) surface of platinum at an angle just off a
(100) zone. At a glancing angle of 58.6 mrad, which is
slightly less than the angle for satisfying the (888)
re¯ection, a many-beam calculation of the re¯ection
coef®cient as a function of azimuthal angle shows a peak
at 12.0 mrad of height 0.039 and width at half-maximum
of 3.3 mrad. The approximation of Dudarev & Whelan
(1994a,b) when applied to this situation reproduces the
many-beam results very closely. [Note, however, that
Derlet & Smith (1997) show their results as having a

Fig. 2. The coef®cient of re¯ection as a function of azimuthal angle for
100 keV electrons incident on the (111) surface of platinum,
calculated using the three-beam approximation, showing a peak
when the surface resonance state is established. The dashed line
shows the many-beam results of Dudarev & Whelan (1994a,b).
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peak at 10.8 mrad and a height of 0.049 and a width of
2.7 mrad. The present author, on using the formulae of
Dudarev & Whelan, has found a peak at 12.1 mrad of
height 0.048 and width 3.3 mrad.] The approximation of
Dudarev & Whelan (1994a,b) requires three parameters,
which they estimate from many-beam calculations.
The relationship of these parameters to the modi®ed
potential coef®cients introduced in the previous section
is discussed below.

Fig. 2 shows the variation of re¯ection coef®cient with
respect to azimuthal angle, calculated using equations
(12), (13) and (21) with g � 2��4=d111� and G � 2�=d440.
The mean inner potential for the bulk was taken to be
(34.34 ÿ i1.89) eV and the other Fourier coef®cients of
the potential are calculated using the formula for atomic
scattering factors given by Dudarev & Whelan (1995).
Fig. 2 was calculated by ®rst computing the total
re¯ection coef®cient R as given by equation (21), then
subtracting the coef®cient of re¯ection assuming only
scattering of the (888) re¯ection, and ®nally adding a
constant background of (ÿ1.3032ÿ i7.60212) � 10ÿ3, as
given by Derlet & Smith (1997). The modi®ed potential
calculations were performed for each value of the
azimuthal angle since they depend on the parameter cG,
which depends on the y component of the incident
wavevector. Equation (25) was used with g � 2�=d111,
G � 2�=d440, M0 � 8 and MG � 4. When the azimuthal
angle is about 7.5 mrad, the (0, G, ÿ5g) beam is nearly
satis®ed and the set of three strong beams has to be
rede®ned. The same situation arises at an azimuthal
angle near 5.2 mrad when the (0, G, ÿ3g) beam is
approximately satis®ed. Fig. 2 shows a peak of height
0.038 and a width of 2.0 mrad centred at 11.1 mrad.
Thus, compared with the results of the many-beam
calculations, the width is too small and the peak position
is in error by 0.9 mrad. The approximate method of
Dudarev & Whelan (1994a,b), using values of the
parameters given by these authors, is found to give a
peak at the same position and of the same width as given
by many-beam calculations, but with a height of 0.048.

The depth of penetration D as a function of azimuthal
angle is shown in Fig. 3. It is the inverse of the imaginary
part of 2�gx(2). Fig. 3 also shows the curve obtained
using the approximate method of Dudarev & Whelan
(1994a,b). The minima are separated by about 1 mrad. If
the value of the parameter controlling peak height in
their method is reduced to a value to give a peak height
of 0.038, then the curve for the depth of penetration
generated with this value is close to the curve shown in
Fig. 3 produced by the methods described herein, apart
from a shift of 1 mrad.

The positions of the peak in the re¯ection-coef®-
cient curve and the minimum in the penetration-
depth curve depend critically on the real part of
�U��0;G;ÿMGg�; �0;G;ÿMGg��. This coef®cient can be
considered as the average potential experienced by
electrons in the resonance state, in which state they are
travelling parallel to the surface. Peng et al. (1988) and
Yao & Cowley (1990) provide a detailed discussion of
this point. These authors have estimated the mean
potential to be about 70 V by analysing the differences
in the positions of the enhanced re¯ectivity at resonance
and the positions of Kikuchi lines, which depend on the
mean potential of the bulk. In the approach of Dudarev
& Whelan (1994a,b) it is the parameters "0 that deter-
mine the position of maximum re¯ectivity. "0 is the
energy of a bound state in the potential of (111) planes.
Fig. 4 shows how the real part of this coef®cient of
potential varies with azimuthal angle and also indicates
the value of ÿ"0=e which was determined from many-
beam calculations. The peaks in the curve are an indi-
cation that the assumption that only one Fourier
component is suf®cient to describe the scattering power
along the (0, G) rod breaks down. The curve indicates
that the three-beam approximation should be adequate
for azimuthal angles greater than about 9 mrad. The
corrected potential coef®cients differ by up to 200%
from the original coef®cients. Thus, use of ®rst-order
perturbation theory to estimate the coef®cients of the
modi®ed potential requires that further iterations of the

Fig. 3. Variation of depth of penetration (D) of the primary beam,
divided by the spacing of the (111) planes, with azimuthal angle. The
dashed line shows the approximation of Dudarev & Whelan
(1994a,b).

Fig. 4. The real part of the coef®cient �U��0;G;ÿMGg�; �0;G;ÿMGg��
as a function of azimuthal angle. Also shown, by the dashed line, is
the parameter ÿ"0=e from the approximate method of Dudarev &
Whelan (1994a,b).
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scheme for including many-beam effects be carried out.
This is not attempted in this paper. However, the results
from many-beam computations indicate that ®rst-order
perturbation theory has a useful degree of accuracy.

A possible improvement on perturbation theory for
estimating this mean potential is to obtain an expression
for the scattering by a one-dimensional sinusoidal
potential with Fourier coef®cient U�00g�, an approach
similar to that of Dudarev & Whelan (1994a,b).

The width of the peak is determined by the
parameter ÿ. Fig. 5 shows how the imaginary part
of �U��0;G;ÿMGg�; �0;G;ÿMGg�� varies with azi-
muthal angle and also shows ÿ=2 estimated from
many-beam calculations. The reason that the peak in
Fig. 2 is narrower than that obtained by many-beam
computations is that the potential coef®cient
�U��0;G;ÿMGg�; �0;G;ÿMGg�� varies rapidly with
azimuthal angle around 9 to 12 mrad. If it is assumed
that this is because of the inapplicability of pertur-
bation theory and that it should be a constant value
equal to its value at 11.1 mrad, it may be calculated
that the re¯ection coef®cient shows a peak of width
3.2 mrad, which is close to the many-beam value.

The height of the peak depends on the modi®ed
potential coef®cient �U��0; 0; 0�; �0;G;ÿMGg��. In
Dudarev & Whelan (1994a,b), the peak height depends
on the parameter �, which is related to scattering from a
plane wave into the wave propagating parallel to the
surface. In Fig. 6, the real part of this potential coef®-
cient is plotted and the value of � given by Dudarev &
Whelan, as well as that which gives a peak height of
0.038, is indicated.

The comparisons shown in Figs. 4, 5 and 6 suggest that
the parameters used by Dudarev & Whelan (1994a,b)
can be interpreted using the standard terminology of
diffraction theory. Further justi®cation for interpreting
these parameters in this way is obtained by taking the
values of "0 and ÿ given by Dudarev & Whelan and a
value of � which is 0.78 of their value (to obtain the
peak height of 0.038) and using them in the approach
described in the present paper. The resulting re¯ection

coef®cient has a peak at 12.1 mrad, is of height 0.041 and
of width 3.2 mrad, and the plot of the penetration depth
against azimuthal angle is very close to that generated
by the theory of Dudarev & Whelan (1994a,b).

Dudarev & Whelan (1997) have proposed that the
angles at which resonance occurs can be determined
from the energies of the bound states of a one-dimen-
sional potential perpendicular to the crystal surface.
Assuming that bound-state energies are related to the
real part of �U��0;G;ÿMGg�; �0;G;ÿMGg��, the condi-
tion for resonance according to these authors is �cG � 0.
The present analysis shows that while this condition is
approximately satis®ed when c0 ' 1, as in the orienta-
tions chosen by Dudarev & Whelan (1997), it is not a
necessary condition for resonance.

5. Conclusions

It has been shown that a three-beam approach predicts
how the re¯ection coef®cient for fast electrons
diffracting under resonance conditions varies with the
angle of incidence. A simple expression has been
derived for the depth of penetration, as have expres-
sions for the re¯ection coef®cient. These expressions
require only simple encoding for evaluation by
computer. Provided Bethe's perturbation theory is
suf®ciently accurate, a full many-beam calculation is not
required to estimate the potential coef®cients that occur
in these expressions. This study has shown that addi-
tional insights into electron diffraction by crystal
surfaces can be achieved through a three-beam analysis,
as Moodie et al. (1996) have shown for the transmission
case.

APPENDIX A

Here we discuss in more detail how the expressions for
the eigenvalues were obtained.

The series expansion, in powers of the Fourier
coef®cients of the potential, of the Hill's determinant

Fig. 5. The imaginary part of the coef®cient
�U��0;G;ÿMGg�; �0;G;ÿMGg�� as a function of azimuthal angle.
Also shown, by the dashed line, is the parameter �ÿ=2�=e from the
approach of Dudarev & Whelan (1994a,b).

Fig. 6. The real part of the coef®cient �U��0; 0; 0�; �0;G;ÿMGg�� as a
function of azimuthal angle. Also shown is the real part of the
parameter �=e from the approach of Dudarev & Whelan (1994a,b)
as estimated by these authors (dashed line) and as estimated by
®tting the peak height (dotted line).
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associated with the scattering equations was found
using the computer algebra package Mathematica
(Wolfram, 1991).

The in®nite determinant associated with the scat-
tering equations (9) can be put into the form of a Hill's
determinant after division by �x�m�2 ÿ c2

G0 (Lamla,
1938; Moon, 1972). There are only two independent
eigenvalues associated with the scattering matrix
implied by (9). All other eigenvalues differ from these
two by integers or they are the complex conjugates of
these eigenvalues. They are obtained from the roots of
the biquadratic equation

y4�1� 2A0y0 � 2AGyG� � y2�ÿy2
0 ÿ y2

G

� 2A0y0�1ÿ y2
G� � 2AGyG�1ÿ y2

0��
� �y2

0y2
G ÿ 2A0y0y2

G ÿ 2AGyGy2
0� � 0; �27�

where y � tan�x, y0 � tan�c0, yG � tan�cG and A0

and AG depend on the Hill's determinant �1�x�.
A0 � � lim

x!c0

�xÿ c0��1�x�

AG � � lim
x!cG

�xÿ cG��1�x�:

Using computer algebra, we ®nd to the lowest orders
in U00g and U0Gg that

A0 � ÿ�
�U0Gg=g2�2

2c0��1ÿ c0�2 ÿ c2
G�

ÿ � �U0Gg=g2�2
2c0��1� c0�2 ÿ c2

G�

ÿ �
(

1

2c0��ÿ2ÿ c0�2 ÿ c2
0�

� 1

2c0��2ÿ c0�2 ÿ c2
0�

)
�U00g=g2�2 �28�

AG � ÿ�
�U0Gg=g2�2

2cG��ÿc2
0� � �1� cG�2�

ÿ � �U0Gg=g2�2
2cG�ÿc2

0 � �1ÿ cG�2�

ÿ �
(

1

2cG��2� cG�2 ÿ c2
G�

� 1

2cG��2ÿ cG�2 ÿ c2
G�

)
�U00g=g2�2: �29�

Since the Fourier coef®cients of the potential are small
compared with 1, we ®nd that equation (27) can be
approximated by

y4 � y2�ÿy2
0 ÿ y2

G�
� �y2

0y2
G ÿ 2A0y0y2

G ÿ 2AGyGy2
0� � 0: �30�

The roots of the quadratic equation (27) are

�1=2��y2
0 � y2

G� � �1=2���y2
0 ÿ y2

G�2
� 8A0y0y2

G � 8AGyGy2
0�1=2: �31�
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